Survival and energetic costs of repeated cold exposure in the Antarctic midge, Belgica antarctica: a comparison between frozen and supercooled larvae.

نویسندگان

  • Nicholas M Teets
  • Yuta Kawarasaki
  • Richard E Lee
  • David L Denlinger
چکیده

In this study, we examined the effects of repeated cold exposure (RCE) on the survival, energy content and stress protein expression of larvae of the Antarctic midge, Belgica antarctica (Diptera: Chironomidae). Additionally, we compared results between larvae that were frozen at -5°C in the presence of water during RCE and those that were supercooled at -5°C in a dry environment. Although >95% of larvae survived a single 12 h bout of freezing at -5°C, after five cycles of RCE survival of frozen larvae dropped below 70%. Meanwhile, the survival of control and supercooled larvae was unchanged, remaining around 90% for the duration of the study. At the tissue level, frozen larvae had higher rates of cell mortality in the midgut than control and supercooled larvae. Furthermore, larvae that were frozen during RCE experienced a dramatic reduction in energy reserves; after five cycles, frozen larvae had 25% less lipid, 30% less glycogen and nearly 40% less trehalose than supercooled larvae. Finally, larvae that were frozen during RCE had higher expression of hsp70 than those that were supercooled, indicating a higher degree of protein damage in the frozen group. Results were similar between larvae that had accumulated 60 h of freezing at -5°C over five cycles of RCE and those that were frozen continuously for 60 h, suggesting that the total time spent frozen determines the physiological response. Our results suggest that it is preferable, both from a survival and energetic standpoint, for larvae to seek dry microhabitats where they can avoid inoculative freezing and remain unfrozen during RCE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The protective effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the Antarctic midge, Belgica antarctica.

During the austral summer, larvae of the terrestrial midge Belgica antarctica (Diptera: Chironomidae) experience highly variable and often unpredictable thermal conditions. In addition to remaining freeze tolerant year-round, larvae are capable of swiftly increasing their cold tolerance through the rapid cold-hardening (RCH) response. The present study compared the induction of RCH in frozen ve...

متن کامل

Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica.

Rapid cold-hardening (RCH) is well known to increase the tolerance of chilling or cold shock in a diverse array of invertebrate systems at both organismal and cellular levels. Here, we report a novel role for RCH by showing that RCH also increases freezing tolerance in an Antarctic midge, Belgica antarctica (Diptera, Chironomidae). The RCH response of B. antarctica was investigated under two di...

متن کامل

Rapid cold-hardening in larvae of the Antarctic midge Belgica antarctica: cellular cold-sensing and a role for calcium.

In many insects, the rapid cold-hardening (RCH) response significantly enhances cold tolerance in minutes to hours. Larvae of the Antarctic midge, Belgica antarctica, exhibit a novel form of RCH, by which they increase their freezing tolerance. In this study, we examined whether cold-sensing and RCH in B. antarctica occur in vitro and whether calcium is required to generate RCH. As demonstrated...

متن کامل

Energetic consequences of repeated and prolonged dehydration in the Antarctic midge, Belgica antarctica.

Larvae of the Antarctic midge, Belgica antarctica, routinely face periods of limited water availability in their natural environments on the Antarctic Peninsula. As a result, B. antarctica is one of the most dehydration-tolerant insects studied, surviving up to 70% loss of its body water. While previous studies have characterized the physiological effects of a single bout of dehydration, in nat...

متن کامل

Osmoregulation and salinity tolerance in the Antarctic midge, Belgica antarctica: seawater exposure confers enhanced tolerance to freezing and dehydration.

Summer storms along the Antarctic Peninsula can cause microhabitats of the terrestrial midge Belgica antarctica to become periodically inundated with seawater from tidal spray. As microhabitats dry, larvae may be exposed to increasing concentrations of seawater. Alternatively, as a result of melting snow or following rain, larvae may be immersed in freshwater for extended periods. The present s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 214 Pt 5  شماره 

صفحات  -

تاریخ انتشار 2011